Self-affine sets with non-compactly supported random perturbations
نویسندگان
چکیده
منابع مشابه
Construction of compactly supported affine frames
Since the publication, less than ten years ago, of Mallat’s paper on Multiresoltion Analysis [Ma], and Daubechies’ paper on the construction of smooth compactly supported refinable functions [D], wavelets had gained enormous popularity in mathematics and in the application domains. It is sufficient to note that there are currently more than 10,000 subscribers to the monthly Wavelet Digest. At t...
متن کاملCountable Alphabet Non-autnomous Self-affine Sets
We extend Falconer’s formula from [1] by identifying the Hausdorff dimension of the limit sets of almost all contracting affine iterated function systems to the case of an infinite alphabet, non-autonomous choice of iterating matrices, and time dependent random choice of translations.
متن کاملPassivity-Based Stability Analysis and Robust Practical Stabilization of Nonlinear Affine Systems with Non-vanishing Perturbations
This paper presents some analyses about the robust practical stability of a class of nonlinear affine systems in the presence of non-vanishing perturbations based on the passivity concept. The given analyses confirm the robust passivity property of the perturbed nonlinear systems in a certain region. Moreover, robust control laws are designed to guarantee the practical stability of the perturbe...
متن کاملCompactly supported tight affine spline frames in L2(Rd)
The theory of fiberization is applied to yield compactly supported tight affine frames (wavelets) in L2(R) from box splines. The wavelets obtained are smooth piecewise-polynomials on a simple mesh; furthermore, they exhibit a wealth of symmetries, and have a relatively small support. The number of “mother wavelets”, however, increases with the increase of the required smoothness. Two bivariate ...
متن کاملCompactly Supported Tight Affine Spline Frames in L
The theory of fiberization is applied to yield compactly supported tight affine frames (wavelets) in L2(R) from box splines. The wavelets obtained are smooth piecewise-polynomials on a simple mesh; furthermore, they exhibit a wealth of symmetries, and have a relatively small support. The number of “mother wavelets”, however, increases with the increase of the required smoothness. Two bivariate ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales Academiae Scientiarum Fennicae Mathematica
سال: 2014
ISSN: 1239-629X,1798-2383
DOI: 10.5186/aasfm.2014.3948